Mathématiques - Devoir surveillé n°8

Exercice 1 (Question de cours) (2 points):

Soit q un nombre réel différent de 1. Démontrer que $1+q+q^2+q^3+\ldots+q^n=\frac{1-q^{n+1}}{1-q}$

Exercice 2 (3 points):

Pour chacune des suites, indiquer si elle est arithmétique, géométrique ou ni l'un ni l'autre. Justifier la réponse.

- 1. $u_n = 3 + n^2$ 2. $v_n = \frac{2^{n+3}}{5^n}$
- 3. $\begin{cases} u_0 = 5 \\ u_{n+1} = u_n + 0, 1 \end{cases}$

Exercice 3 (4 points):

Soit (u_n) une suite géométrique telle que $u_2 = 50$ et $u_5 = 6250$.

- 1. Déterminer la raison q de cette suite, puis son premier terme u_0 .
- 2. Exprimer u_n en fonction de n.
- 3. Déterminer le sens de variation de (u_n) (croissante, décroissante ou ni l'un ni l'autre).
- 4. Calculer $S = u_0 + u_1 + u_2 + ... + u_{20}$ (donner une valeur approchée à 3 chiffres significatifs).

Exercice 4 (4 points):

Étudier les variations des suites suivantes :

- 1. (u_n) définie par $u_{n+1} = 2^n n + 1$ pour $n \in \mathbb{N}$.
- 2. (v_n) définie par $v_n = n^2 n 1$ pour $n \in \mathbb{N}$.

Exercice 5 (7 points):

On considère la suite (u_n) définie par $u_0=8$ et, pour tout entier naturel $n:u_{n+1}=\frac{1}{5}u_n+2$.

- 1. Calculer u_1 , u_2 et u_3 . La suite (u_n) est-elle géométrique, arithmétique?
- 2. Compléter l'algorithme suivant pour qu'il calcule u_n , n étant choisi par l'utilisateur.

```
Lire n
Initialisation:
   u prend la valeur ......
Traitement:
   Pour k allant de 1 jusqu'à n:
   u prend la valeur ......
Fin Pour
Retourner ......
```

3. On considère la suite (v_n) définie par $v_n = u_n - \frac{5}{2}$. Démontrer que (v_n) est géométrique. Donner sa raison et son premier terme v_0 .

1

- 4. Exprimer v_n en fonction de n. En déduire que $u_n = \frac{5}{2} + \frac{11}{2} \times \left(\frac{1}{5}\right)^n$.
- 5. Calculer u_5 , u_{10} , u_{20} . Quelle semble être la limite de la suite (u_n) ?