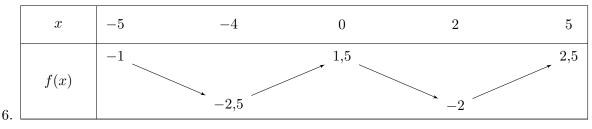

## Correction du devoir surveillé n° 2

## Exercice 1:




- 1. L'image de -3 est -1,5.
- 2. On trouve que 2 a un seul antécédent qui est 4,5.
- 3. On cherche les points de la courbe d'ordonnée 0. Il y en a 3, on cherche ensuite leur abscisse. On trouve que les solutions de l'équation f(x) = 0 sont : x = -2; x = 1 et x = 3,5. Autrement dit :  $\mathscr{S} = \{-2; 1; 3,5\}$ .
- 4. On cherche les points de la courbe dont l'ordonnée est supérieure ou égale à 1. On cherche ensuite leur abscisse.

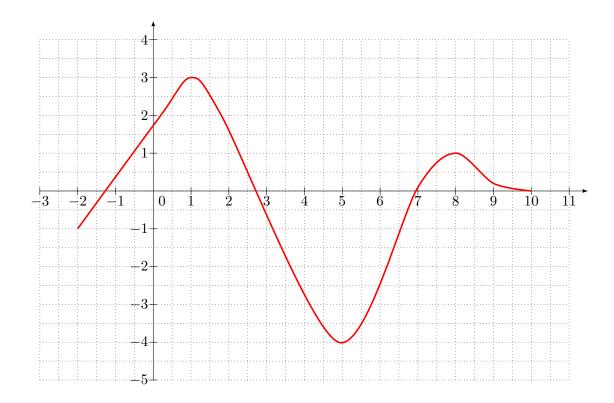
L'ensemble solution est formé de deux intervalles :  $\mathscr{S} = [-1; 0,5] \cup [4;5]$ .

5. On cherche les points de la courbe dont l'ordonnée est inférieure ou égale à 2. On cherche ensuite leur abscisse.

L'ensemble solution est formé d'un intervalle :  $\mathcal{S} = [-5; 4,5]$ .



- 7. Le minimum de f est -2.5, atteint pour x = -4.
- 8. Le maximum de f est 2,5, atteint pour x = 5.
- 9. La fonction f est croissante sur les intervalles [-4;0] et [2;5].


## Exercice 2:

| x    | -2 | 1 | 5  | 8 | 10 |
|------|----|---|----|---|----|
| g(x) | -1 | 3 | -4 | 1 | 0  |

1.

| a) La fonction $g$ est décroissante sur l'intervalle $[1;5]$        | F            | ? |
|---------------------------------------------------------------------|--------------|---|
| b) La fonction $g$ est décroissante sur l'intervalle $[-1;0]$       | $\mathbf{F}$ | ? |
| c) Le minimum de la fonction $g$ sur l'intervalle $[-2;5]$ est $-1$ | $\mathbf{F}$ | ? |
| d) Le maximum de la fonction $g$ sur l'intervalle $[0;2]$ est $3$   | F            | ? |
| e) $g(0) \ge g(2)$                                                  | F            | ? |
| f) $g(0) \le g(5)$                                                  | $\mathbf{F}$ | ? |

2.

