MATHÉMATIQUES - Devoir surveillé nº3

Question de cours (Nouvelle Calédonie, novembre 2007) - 2 points :

- 1. Soit f une fonction réelle définie sur $[a; +\infty[$. Compléter la phrase suivante : « On dit que f admet une limite finie ℓ en $+\infty$ si ... »
- 2. Démontrer le théorème « des gendarmes » : soient f, g, h, trois fonctions définies sur $[a; +\infty[$ et ℓ un nombre réel. Si g et h ont pour limite commune ℓ quand x tend vers $+\infty$, et si pour tout x assez grand $g(x) \le f(x) \le h(x)$, alors la limite de f(x) quand x tend vers $+\infty$ est égale à ℓ .

Exercice 1 (d'après Polynésie, septembre 2010) - 9 points :

Partie A

Soit g la fonction définie sur $[0; +\infty[$ par $g(x)=e^x-xe^x+1$.

- 1. Déterminer la limite de g en $+\infty$.
- 2. Étudier les variations de la fonction *g*.
- 3. Donner le tableau de variation de g.

4.

- a. Démontrer que l'équation g(x) = 0 admet sur $[0; +\infty[$ une unique solution. On note α cette solution.
- b. À l'aide de la calculatrice, déterminer un encadrement d'amplitude 10^{-2} de α .
- c. Démontrer que $e^{\alpha} = \frac{1}{\alpha 1}$.
- 5. Déterminer le signe de g(x) suivant les valeurs de x.

Partie B

Soit A la fonction définie et dérivable sur [0 ; + ∞ [telle que : $A(x) = \frac{4x}{e^x + 1}$.

- 1. Démontrer que pour tout réel x positif ou nul, A'(x) a le même signe que g(x), où g est la fonction définie dans la partie A.
- 2. En déduire les variations de la fonction A sur $[0; +\infty[$.
- 3. Déterminer la limite de A en $+\infty$ et en déduire que la représentation graphique de A admet en $+\infty$ une asymptote horizontale.

Exercice 2 : (d'après Amérique du Nord, juin 2011) - 9 points :

Partie A

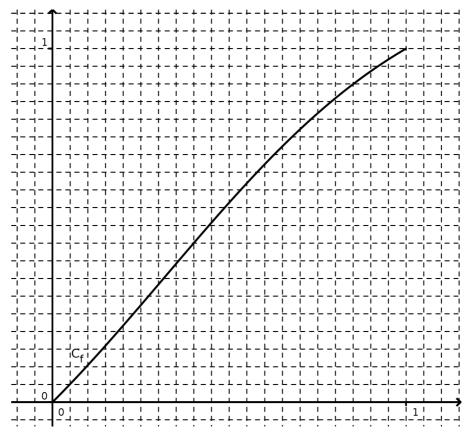
On considère la fonction g définie sur $[0; +\infty[$ par : $g(x)=e^x-x-1$.

- 1. Étudier les variations de la fonction *g*.
- 2. Déterminer le signe de g(x) suivant les valeurs de x.
- 3. En déduire que pour tout x de $[0; +\infty[, e^x x > 0]$.

Partie B

On considère la fonction f définie sur [0; 1] par : $f(x) = \frac{e^x - 1}{e^x - x}$.

La courbe $\mathscr C$ représentative de la fonction f dans le plan muni d'un repère orthonormal est donnée ciaprès :



La figure sera complétée et remise avec la copie à la fin de l'épreuve.

On admet que f est strictement croissante sur [0; 1].

- 1. Montrer que pour tout x de [0; 1], $f(x) \in [0; 1]$.
- 2. Soit (D) la droite d'équation y = x.
 - a. Montrer que pour tout x de [0; 1], $f(x)-x=\frac{(1-x)g(x)}{e^x-x}$.
 - b. Étudier la position relative de la droite (D) et de la courbe $\mathscr E$ sur $[0\ ;\ 1].$

Partie C

On considère la suite (u_n) définie par : $\begin{bmatrix} u_0 = \frac{1}{2} \\ \text{pour tout entier naturel } n \text{ , } u_{n+1} = f(u_n) \end{bmatrix}$

1. Construire sur l'axe des abscisses les quatre premiers termes de la suite en laissant apparents les traits de construction.

2/2

- 2. Montrer que pour tout entier naturel $n, \frac{1}{2} \le u_n \le u_{n+1} \le 1$.
- 3. En déduire que la suite (u_n) est convergente et déterminer sa limite.