Corrigé du devoir surveillé nº3

Exercice 1:

Partie A:

1. On a : $\lim_{h \to 0} \frac{\mathrm{e}^h - 1}{h} = \lim_{h \to 0} \frac{\exp(0 + h) - \exp(0)}{h} = \exp'(0)$: c'est le nombre dérivé de la fonction exponentielle en 0.

Or, par définition, $\exp'(x) = \exp(x)$ pour tout x, donc : $\exp'(0) = \exp(0) = 1$.

Par conséquent, $\lim_{h\to 0} \frac{e^h-1}{h} = 1$.

2. On a : $\lim_{h \to 0} \frac{e^h - 1}{h} = 1$, donc d'après les propriétés des limites : $\lim_{h \to 0} \frac{h}{e^h - 1} = \lim_{h \to 0} \frac{1}{\frac{e^h - 1}{h}} = \frac{1}{1} = 1$.

Il suffit de remplacer h par x pour obtenir : $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x}{e^x - 1} = 1$

3. D'après le cours, on sait que : $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ et $\lim_{x \to +\infty} \frac{1}{x} = 0$, donc $\lim_{x \to +\infty} \frac{e^x - 1}{x} = \lim_{x \to +\infty} \frac{e^x}{x} - \frac{1}{x} = +\infty$.

On utilise à nouveau le fait que $\lim_{y \to +\infty} \frac{1}{y} = 0^+$: par composition, $\lim_{x \to +\infty} \frac{x}{e^x - 1} = \lim_{x \to +\infty} \frac{1}{e^x - 1} = 0$.

Ainsi, $\lim_{x \to +\infty} f(x) = 0$

- 4. On applique la formule de dérivation d'un quotient : $f'(x) = \frac{1 \times (e^x 1) x \times e^x}{(e^x 1)^2} = \frac{e^x x e^x 1}{(e^x 1)^2}.$
- $5. \ \ Ici, on emploie la formule de dérivation d'un produit (que certains ont oubliée):$

$$N'(x) = e^{x} - (1 \times e^{x} + x \times e^{x}) = e^{x} - e^{x} - x e^{x} = -x e^{x}.$$

On voit que $x \ge 0$ et $e^x > 0$, donc $N'(x) \le 0$.

Par conséquent, N est **décroissante** sur $[0; +\infty[$.

6. $N(0)=e^0-0\times e^0-1=1-1=0$.

N est décroissante, donc pour tout $x \ge 0$, $N(x) \le N(0) = 0$.

On vérifie ainsi que N est négative sur $[0; +\infty[$.

7. On voit que $f'(x) = \frac{N'(x)}{(e^x - 1)^2}$. Le dénominateur est positif (c'est un carré) ; le numérateur est négatif, d'après la question précédente. On obtient donc :

x	0	+∞
f'(x)	_	
f(x)	1	0

Partie B:

1. C'est la somme de n termes consécutifs d'une suite géométrique de raison $e^{\overline{n}}$. On peut donc

appliquer la formule :
$$u_0 + u_0 q + u_0 q^2 + \dots + u_0 q^n = u_0 \frac{1 - q^{\text{nombre de termes}}}{1 - q}$$

Ainsi:

$$1 + e^{\frac{1}{n}} + e^{\frac{2}{n}} + \dots + e^{\frac{n-1}{n}} = 1 + \left(e^{\frac{1}{n}}\right) + \left(e^{\frac{1}{n}}\right)^2 + \dots + \left(e^{\frac{1}{n}}\right)^{n-1} = \frac{1 - \left(e^{\frac{1}{n}}\right)^n}{1 - \left(e^{\frac{1}{n}}\right)}$$
 (il y a *n* termes).

On peut simplifier un peu :
$$\left(e^{\frac{1}{n}}\right)^n = e^{\frac{1}{n} \times n} = e^1 = e$$
.

Par conséquent : $1 + e^{\frac{1}{n}} + e^{\frac{2}{n}} + \dots + e^{\frac{n-1}{n}} = \frac{1-e}{1-\left(e^{\frac{1}{n}}\right)}$.

$$\text{On en déduit que}: \ u_{\scriptscriptstyle n} = \frac{1}{n} \times \frac{1-\mathrm{e}}{1-\mathrm{e}^{\frac{1}{n}}} = \frac{1}{n} \times \frac{\mathrm{e}-1}{\mathrm{e}^{\frac{1}{n}}-1} \text{, ce qui se réécrit}: } u_{\scriptscriptstyle n} = (\mathrm{e}-1) \times \frac{\frac{1}{n}}{\mathrm{e}^{\frac{1}{n}}-1} = (\mathrm{e}-1)f\left(\frac{1}{n}\right).$$

2. Il s'agit de chercher la limite de $f\left(\frac{1}{n}\right)$ lorsque n tend vers $+\infty$. On applique donc le théorème sur la limite de la composée d'une suite et d'une fonction.

On a:
$$\lim_{n \to +\infty} \frac{1}{n} = 0$$
 donc par composition: $\lim_{n \to +\infty} f\left(\frac{1}{n}\right) = 1$.

On en déduit :
$$\lim_{n \to +\infty} u_n = e - 1$$
.

Exercice 2:

1. D'après le graphique, toutes les courbes semblent passer par $A\left[0;\frac{1}{2}\right]$.

Prouvons-le par le calcul : pour tout
$$n \in \mathbb{N}$$
, $f_n(0) = \frac{e^{-n \times 0}}{1 + e^{-0}} = \frac{e^0}{1 + e^0} = \frac{1}{2}$.

2.

a) Remarquons que $f_0(x) = \frac{e^{-0 \times x}}{1 + e^{-x}} = \frac{1}{1 + e^{-x}}$.

On rappelle que la dérivée de $\frac{1}{u}$ est $-\frac{u'}{u^2}$. Ici, on pose : $u(x)=1+e^{-x}$, donc : $u'(x)=-e^{-x}$.

On obtient:
$$f'(x) = \frac{-(-e^x)}{(1+e^{-x})^2} = \frac{e^{-x}}{(1+e^{-x})^2}$$
.

Le numérateur et le dénominateur sont strictement positifs, donc : f'>0 sur \mathbb{R} . Par conséquent, f est **strictement croissante** sur \mathbb{R} .

b) En $-\infty$:

$$\lim_{x \to -\infty} e^{-x} = +\infty \text{ donc } \lim_{x \to -\infty} 1 + e^{-x} = +\infty.$$

On en déduit, d'après les propriétés des limites : $\lim_{x \to -\infty} \frac{1}{1 + e^{-x}} = 0$.

En $+\infty$:

$$\lim_{x \to +\infty} e^{-x} = 0$$
 donc $\lim_{x \to +\infty} 1 + e^{-x} = 1$.

On en déduit :
$$\lim_{x \to +\infty} \frac{1}{1 + e^{-x}} = 1$$
.

c) Résumons:

x	$-\infty$	0	+∞
$f_0'(x)$		+	
$f_0(x)$	0	$\frac{1}{2}$, 1

d) On a $\lim_{x \to -\infty} f_0(x) = 0$ et $\lim_{x \to +\infty} f_0(x) = 1$; 0,8 est compris entre ces deux limites.

La fonction f_0 est **continue** et **strictement croissante** d'après le tableau.

Par conséquent, d'après le théorème de la bijection, l'équation $f_0(x)=0.8$ a une solution unique sur R.

Grâce à la calculatrice, on trouve $\alpha \simeq 1.4$.

3.

a) Il suffit de multiplier le numérateur et le dénominateur par e^x .

$$f_n(x) = \frac{e^{-nx}}{1 + e^{-x}} = \frac{e^{nx} \times e^{-nx}}{e^{nx}(1 + e^{-x})} = \frac{1}{e^{nx} + e^{nx - x}} = \frac{1}{e^{nx} + e^{(n-1)x}}$$
.

b) On va utiliser l'expression de $f_n(x)$ donnée à la question précédente.

En $-\infty$:

 $\begin{array}{lll} \text{Comme} & n \geqslant 2 \text{ , par composition : } \lim_{x \to -\infty} n \, x = -\infty & \text{et } \lim_{y \to -\infty} \mathrm{e}^y = 0^+ \text{ , donc } \lim_{x \to -\infty} \mathrm{e}^{n \, x} = 0 \text{ .} \\ \text{De même, comme} & (n-1) \geqslant 1 \text{ , } \lim_{x \to -\infty} (n-1) x = -\infty & \text{et } \lim_{y \to -\infty} \mathrm{e}^y = 0^+ \text{ , donc } \lim_{x \to -\infty} \mathrm{e}^{(n-1)x} = 0^+ \text{ .} \\ & \lim_{x \to -\infty} \mathrm{e}^{(n-1)x} = 0^+ \text{ .} \end{array}$

Donc: $\lim e^{nx} + e^{(n-1)x} = 0^+$.

On en déduit, d'après les propriétés des limites : $\lim_{x \to -\infty} \frac{1}{e^{nx} + e^{(n-1)x}} = +\infty$.

 $En + \infty$:

Comme $n \ge 2$, par composition: $\lim n x = +\infty$ et $\lim e^y = +\infty$, donc $\lim e^{nx} = +\infty$.

De même, comme $(n-1) \ge 1$, $\lim_{x \to +\infty} (n-1)x = +\infty$ et $\lim_{y \to +\infty} e^y = +\infty$, donc $\lim_{x \to +\infty} e^{(n-1)x} = +\infty$.

Donc: $\lim e^{nx} + e^{(n-1)x} = +\infty$.

On en déduit, d'après les propriétés des limites : $\lim_{x \to +\infty} \frac{1}{e^{nx} + e^{(n-1)x}} = 0$.

Conclusion: $\lim_{x \to -\infty} f_n(x) = +\infty$ et $\lim_{x \to +\infty} f_n(x) = 0$.

c) On a: $f_n(x) = \frac{e^{-nx}}{1 + e^{-x}} = \frac{u(x)}{v(x)}$ en posant: $u(x) = e^{-nx}$ et $v(x) = 1 + e^{-x}$.

On en déduit : $u'(x) = -ne^{-nx}$ et $v'(x) = -e^{-x}$

La formule de dérivation d'un quotient donne :

$$\begin{split} & f_{n}{}^{'}(x) = \frac{-n\operatorname{e}^{-nx} \times (1 + \operatorname{e}^{-x}) - \operatorname{e}^{-nx} \times (-\operatorname{e}^{-x})}{(1 + \operatorname{e}^{-x})^{2}} = \frac{-n\operatorname{e}^{-nx} - n\operatorname{e}^{-nx} + \operatorname{e}^{-nx-x}}{(1 + \operatorname{e}^{-x})^{2}} = \frac{-n\operatorname{e}^{-nx} - \operatorname{e}^{-(n+1)x}(n-1)}{(1 + \operatorname{e}^{-x})^{2}} \,. \end{split}$$
 On sait que $n \ge 2$, donc $-n\operatorname{e}^{-nx} < 0$; de même, $n-1 \ge 1$, donc $-\operatorname{e}^{-(n+1)x}(n-1) < 0$.

Donc, le numérateur est strictement négatif, et le dénominateur est strictement positif. Par conséquent, le quotient est strictement négatif.

On obtient le tableau suivant :

x	$-\infty$	0	+∞
$f_n'(x)$		+	
$f_n(x)$	+∞	$\frac{1}{2}$	0

Voilà.

