MATHÉMATIQUES - Devoir surveillé nº

Exercice 1: (14 points)

L'espace est rapporté au repère orthonormal $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

On considère le cube ABCDEFGH représenté ci-dessous, à rendre avec la copie.

On désigne par I, J et K les milieux respectifs des segments [BC], [BF] et [HF].

1. Déterminer les coordonnées des points I, J et K.

2.

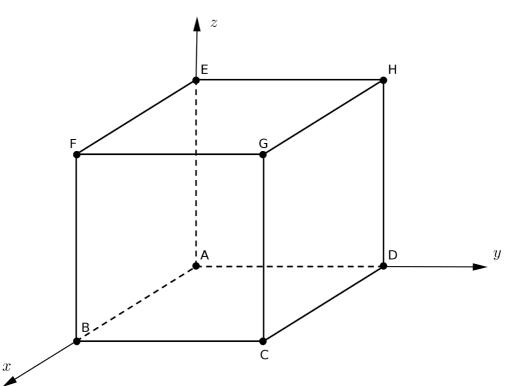
- a) Démontrer que le vecteur \vec{n} (2;1;1) est orthogonal à \vec{IK} et à \vec{IJ} .
- b) En déduire qu'une équation du plan (IJK) est : 4x + 2y + 2z 5 = 0.

3.

- a) Déterminer un système d'équations paramétriques de la droite (CD).
- b) En déduire que le point d'intersection R du plan (IJK) et de la droite (CD) est le point de coordonnées $\left(\frac{3}{4};1;0\right)$. Placer le point R sur la figure.
- 4. Tracer sur la figure la section du cube par le plan (IJK). On peut répondre à cette question sans avoir traité les précédentes.

5.

- a) Montrer que que le point T, projeté orthogonal de G sur (IJK) a pour coordonnées $\left(\frac{1}{2}; \frac{3}{4}; \frac{3}{4}\right)$.
- b) Montrer que la distance du point G au plan (IJK) est $\frac{\sqrt{6}}{4}$.
- c) Soit ${\mathscr S}$ la sphère de centre G passant par F. Justifier que la sphère ${\mathscr S}$ et le plan (IJK) sont sécants.
- d) Déterminer le rayon du cercle intersection de \mathscr{S} et (IJK).
- 6. Construire l'intersection des plans (IJK) et (EDG). Justifier la construction.



Exercice 2: (6 points)

L'espace est rapporté à un repère (O, \vec{i} , \vec{j} , \vec{k}) orthonormé. Soit t un nombre réel.

On donne le point A(-1; 2; 3) et la droite \mathcal{D} de système d'équations paramétriques : $\begin{cases} x = 9 + 4t \\ y = 6 + t \\ z = 2 + 2t \end{cases}$

 $\label{eq:lemma:def} \begin{tabular}{l} \textbf{Le but de cet exercice est de calculer de deux façons différentes la distance d entre le point A et la droite \mathscr{D}.}$

1.

- a) Donner une équation cartésienne du plan ${\mathscr P}$, perpendiculaire à la droite ${\mathscr D}$ et passant par A.
- b) Déterminer les coordonnées de H, point d'intersection de \mathscr{D} et \mathscr{P} .
- c) En déduire la valeur exacte de d, distance entre A et \mathcal{D} .
- 2. Soit M un point de la droite \mathscr{D} .
 - a) Exprimer AM^2 en fonction de t.
 - b) On pose : $f(t) = AM^2$. En étudiant les variations de f, retrouver la valeur de d.