Correction du devoir surveillé nº8

Exercice 1:

1. Méthode habituelle : on pose u(x) l'exposant de e.

Ici : $u(x)=x^3+1$. On en déduit : $u'(x)=3x^2$.

On sait qu'une primitive de $x \rightarrow u'(x) \times e^{u(x)}$ est $x \rightarrow e^{u(x)}$.

On peut donc écrire :

$$\int_{0}^{4} x^{2} e^{x^{3}+1} dx = \int_{0}^{4} \frac{1}{3} 3x^{2} e^{x^{3}+1} dx = \int_{0}^{4} \frac{1}{3} u'(x) e^{u(x)} dx = \left[\frac{1}{3} e^{u(x)} \right]_{0}^{4} = \frac{1}{3} \left(e^{4^{3}+1} - e^{0^{3}+1} \right) = \frac{1}{3} \left(e^{65} - e \right)$$

- 2. Ici, on peut procéder de deux façons :
 - * Soit poser u(x) ce qu'il y a sous le signe « racine carrée » et procéder comme pour la question 1
 - * Soit remarquer que la fonction u est affine.

Première méthode:

On pose u(x)=3x+1. Alors u'(x)=3.

On sait qu'une primitive de $x \rightarrow \frac{u'(x)}{\sqrt{u(x)}}$ est $x \rightarrow 2 \times \sqrt{u(x)}$.

On a donc

$$\int_{1}^{4} \frac{1}{\sqrt{3x+1}} dx = \int_{1}^{4} \frac{1}{3} \times \frac{3}{\sqrt{3x+1}} dx = \int_{1}^{4} \frac{1}{3} \times \frac{u'(x)}{\sqrt{u(x)}} dx = \left[\frac{1}{3} \times 2\sqrt{u(x)} \right]_{1}^{4} = \frac{2}{3} \left(\sqrt{3\times4+1} - \sqrt{3\times1+1} \right) = \frac{2}{3} \left(\sqrt{13} - 2 \right) = \frac{2}{3} \left(\sqrt{3} + \frac{1}{3} + \frac{1}{3}$$

Deuxième méthode:

On sait que si f et u sont deux fonctions telles que : f(x)=u(ax+b), où a et b sont des constantes, alors en appelant F une primitive de f et U une primitive de u, on a :

$$F(x) = \frac{1}{a}U(ax+b).$$

$$\text{Ici, si on pose } u(x) = \frac{1}{\sqrt{x}} \text{ et } f(x) = \frac{1}{\sqrt{3\,x+1}} \text{ , alors } f(x) = u\left(3\,x+1\right) \text{ donc } F(x) = \frac{1}{3} \times U\left(3\,x+1\right)$$

Or
$$U(x)=2\times\sqrt{x}$$
.

On obtient donc : $F(x) = \frac{1}{3} \times 2 \times \sqrt{3x+1}$.

 $\text{D'où}: \int\limits_{1}^{4} \frac{1}{\sqrt{3\,x+1}} \mathrm{d}\,x = \int\limits_{1}^{4} f(x) \, \mathrm{d}\,x = \left[\frac{1}{3} \times 2\,\sqrt{3\,x+1}\right]_{1}^{4} = \frac{2}{3} \left(\sqrt{13} - 2\right) \text{ comme précédemment.}$

3. On peut procéder comme dans la question 2, méthode 2 :

Posons $f(x) = \sin(3x)$; on sait qu'une primitive de sin est $-\cos$.

Donc une primitive de f est $F: F(x) = \frac{1}{3} \times (-\cos(3x))$.

Ainsi:
$$\int_{0}^{\pi} \sin(3x) dx = \left[\frac{1}{3} \times (-\cos(3x)) \right]_{0}^{\pi} = \frac{1}{3} \left[-\cos(3\pi) + \cos(0) \right] = \frac{1}{3} \left[-(-1) + 1 \right] = \frac{2}{3}.$$

Exercice 2:

1. On étudie f comme d'habitude.

Rappel : la dérivée de $x \to \ln(u(x))$ est $x \to \frac{u'(x)}{u(x)}$.

Avec $u(x)=1+e^{-x}$, on obtient $u'(x)=-e^{-x}$.

Rappelons que, plus généralement, la dérivée de $x \rightarrow e^{ax+b}$ est $x \rightarrow a \times e^{ax+b}$.

On obtient donc:
$$f'(x) = 1 + \frac{-e^{-x}}{1 + e^{-x}} = \frac{1 + e^{-x}}{1 + e^{-x}} - \frac{e^{-x}}{1 + e^{-x}} = \frac{1}{1 + e^{-x}}$$
.

Comme $e^{-x}>0$ pour tout x réel, on a f'(x)>0 pour tout x.

On obtient le tableau suivant :

x	0		+∞
f'(x)		+	
f(x)	ln(2)		

On calcule facilement : $f(0)=0+\ln(1+e^0)=\ln(2)$.

Ainsi, f est croissante, et comme f(0)>0, alors pour tout x>0, f(x)>0: f est positive.

2.

a) On a:
$$f(x)-x=\ln(1+e^{-x})$$
.

Il s'agit donc de montrer que $lim ln(1+e^{-x})=0$.

On sait que $\lim_{x \to +\infty} e^{-x} = 0$

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to 1} \ln(x) = 0}} 1 + e^{-x} = 1$$
 donc par composition: $\lim_{x \to +\infty} \ln(1 + e^{-x}) = 0$.

Ainsi, la courbe (%) a bien pour asymptote la droite (D).

b) La droite (\mathcal{D}) représente la fonction h:h(x)=x.

Ainsi, on a : $f(x)-h(x)=\ln(1+e^{-x})$.

Or, $e^{-x}>0$ pour tout x.

Donc $1+e^{-x}>1$.

Vu que ln est croissante, ceci implique : $\ln(1+e^{-x}) > \ln(1)$ soit $\ln(1+e^{-x}) > 0$.

Ainsi, pour tout $x \ge 0$, on a: f(x)-h(x)>0.

Ceci montre que le point de coordonnée (x; f(x)) est toujours au-dessus du pont de coordonnées (x; h(x)). Autrement dit : (%) est au-dessus de (\mathscr{D}).

3.

a) Remarquons que la fonction à intégrer est positive sur [0; 1], d'après la question précédente.

On a:
$$\int_{0}^{1} [f(x)-x] dx = \int_{0}^{1} [f(x)-h(x)] dx \text{ et } f(x) > h(x) \text{ sur } [0; 1].$$

D'après le cours, cette intégrale représente l'aire de la partie du plan comprise entre la courbe (\mathscr{C}) , la droite (\mathscr{D}) , et les droites d'équations x=0 et x=1.

b) Étudions la fonction g de l'énoncé.

On sait que la dérivée de $x \to \ln(u(x))$ est $x \to \frac{u'(x)}{u(x)}$.

Donc la dérivée de $x \rightarrow \ln(1+t)$ est $x \rightarrow \frac{1}{1+t}$.

$${\rm Ainsi:} \ g'(t) = \frac{1}{1+t} - 1 = \frac{1}{1+t} - \frac{1+t}{1+t} = \frac{1-1-t}{1+t} = -\frac{t}{1+t} \ .$$

Comme t et 1+t sont positifs, on a $g'[t] \le 0$ pour tout $t \ge 0$. On obtient le tableau :

\boldsymbol{x}	0 +∞
g'(x)	_
g(x)	0

On a: $g(0)=\ln(1)-0=0$. Donc pour tout $t \ge 0$, $g(t) \le 0$.

Autrement dit : $\ln(1+t)-t \le 0$ soit $\ln(1+t) \le t$.

c) On a pour tout x réel : $e^{-x}>0$. On peut donc remplacer t par e^{-x} dans les deux inégalités précédentes.

On obtient : $\frac{e^{-x}}{1+e^{-x}} \le \ln(1+e^{-x}) \le e^{-x}$.

d) On applique la propriété de croissance de l'intégrale :

$$\frac{e^{-x}}{1+e^{-x}} \le \ln(1+e^{-x}) \le e^{-x} \quad \text{sur } [0;1] \text{ implique } \int_{0}^{1} \frac{e^{-x}}{1+e^{-x}} dx \le \int_{0}^{1} \ln(1+e^{-x}) dx \le \int_{0}^{1} e^{-x} dx.$$

Calculons la première et la dernière intégrale de cet encadrement.

La première :

Posons:
$$u(x)=1+e^{-x}$$
. Alors $u'(x)=-e^{-x}$, donc $\frac{e^{-x}}{1+e^{-x}}=-\frac{u'(x)}{u(x)}$.

Une primitive de $x \rightarrow \frac{u'(x)}{u(x)}$ est $x \rightarrow \ln(u(x))$.

Done

$$\int_{0}^{1} \frac{e^{-x}}{1+e^{-x}} dx = \int_{0}^{1} -\frac{u'(x)}{u(x)} dx = \left[-\ln(u(x))\right]_{0}^{1} = \left[-\ln(1+e^{-x})\right]_{0}^{1} = -\ln(1+e^{-1}) + \ln(1+e^{0}) = \ln(2) - \ln(1+e^{-1})$$

ce qui donne en appliquant la formule : $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$

$$\int_{0}^{1} \frac{e^{-x}}{1+e^{-x}} dx = \ln \left(\frac{2}{1+e^{-1}} \right).$$

La dernière:

Une primitive de $x \rightarrow e^{-x}$ est $x \rightarrow -e^{-x}$.

Par conséquent : $\int_{0}^{1} e^{-x} dx = \left[-e^{-x} \right]_{0}^{1} = -e^{-1} + e^{0} = 1 - e^{-1}.$

On obtient donc l'encadrement : $\ln \left(\frac{2}{1 + e^{-1}} \right) \le I \le 1 - e^{-1}$.

e) On a :
$$\ln \left(\frac{2}{1 + e^{-x}} \right) \approx 0.3799$$
 et $1 - e^{-1} \approx 0.6321$.

Donc $0.3 \le I \le 0.7$. C'est bien un encadrement d'amplitude 0.4.

4. D'après l'énoncé, la distance MN est donné en unités graphiques par f(x)-x.

Attention : l'unité graphique vaut 2 cm.

Il faut convertir : $0.5 \text{ mm} = 0.05 \text{cm} = 0.025 \times 2 \text{ cm} = 0.025 \text{ unités graphiques}$.

Il faut donc résoudre : $f(x)-x \le 0,025$.

On remplace:

 $\ln\left(1+e^{-x}\right) \leq 0,025$

on applique la fonction exponentielle, qui est croissante : $1 \! + \! e^{-x} \! \leqslant \! e^{0,\,025}$

$$1+e^{-x} \le e^{0.025}
e^{-x} \le e^{0.025} - 1$$

On passe au logarithme (fonction croissante) :

$$-x \leq \ln\left(e^{0.025} - 1\right)$$

$$x \geq -\ln\left(e^{0.025} - 1\right)$$

On trouve: $x \approx 3,68$.

L'ensemble cherché est donc : $[3,68 ; +\infty[$.

Voilà.