Suites

1 Définition

Définition 1

Une suite numérique est une liste ordonnée de nombres réels, numérotés par des *indices* qui sont des nombres entiers naturels consécutifs 0, 1, 2...

Si la suite est désignée par la lettre u, à chaque nombre entier naturel n est associé un nombre réel, noté u_n appelé terme de rang n, de la suite.

La notation u_n se lit "u indice n".

La notation (u_n) , entre parenthèses, signifie la suite entière (tous les termes).

Propriété 1 (représentation graphique)

Comme pour une fonction, on peut représenter graphiquement une suite numérique (u_n) par un "nuage de points" de coordonnées $(n; u_n)$, c'est une représentation graphique "discrète", c'est à dire "non continue".

2 Mode de génération

1. Formule explicite : On calcule u_n directement à partir de n.

Exemple: $u_n = n^2 + 3n + 1$

2. Formule de récurrence : À partir d'un terme u_n quelconque, on calcule le terme suivant, u_{n+1} . Il faut donner un premier terme pour commencer le calcul, c'est en général u_0 .

Dans ce cas, l'algorithme permettant de calculer u_n comporte en général une boucle "pour".

Exemple: $u_0 = 2$ et $u_{n+1} = u_n^2 - 2$.

Remarque: Il y a aussi des suites qui ne se définissent ni par une formule explicite ni par une relation de récurrence.

Par exemple, la suite des nombres premiers ou des décimales de π .

3 Sens de variation - Majoration et minoration

Définition 2

Soit p un entier naturel. On dit que :

• Une suite (u_n) est **croissante** à partir du rang p si chaque terme est plus grand que son prédécesseur :

pour tout $n \geqslant p : u_{n+1} \geqslant u_n$

• une suite (u_n) est **décroissante** à partir du rang p si chaque terme est plus petit que son prédécesseur :

pour tout $n \geqslant p : u_{n+1} \leqslant u_n$

• Une suite (u_n) est **constante** à partir du rang p si tous les termes sont égaux :

pour tout $n \geqslant p$: $u_{n+1} = u_n$

- Une suite (u_n) est **majorée** s'il existe un réel M tel que pour tout $n \in \mathbb{N}, u_n \leq M$.
- Une suite (u_n) est **minorée** s'il existe un réel m tel que pour tout $n \in \mathbb{N}, u_n \geqslant m$.

1

• Une suite **bornée** est une suite à la fois majorée et minorée.

4 Suites arithmétiques, géométriques

	Suite arithmétique	Suite géométrique
Définition	Une suite arithmétique est telle que chaque terme se déduit du précédent en lui AJOUTANT une constante r appelée $raison$ de la suite.	Une suite géométrique est telle que chaque terme se déduit du précédent en le MULTI-PLIANT par une constante q appelée $raison$ de la suite.
Récurrence	$\begin{cases} u_0 \text{ donn\'e}, \\ u_{n+1} = u_n + r \end{cases}$	$\begin{cases} u_0 \text{ donn\'e}, \\ u_{n+1} = q \times u_n \end{cases}$
Formule	$u_n = u_0 + n r$	$u_n = u_0 \times q^n$
Représentation graphique	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Croissance	linéaire	exponentielle
Variations	 Si r > 0, (u_n) est strictement croissante sur N Si r = 0, (u_n) est constante sur N Si r < 0, (u_n) est strictement décroissante sur N 	avec $u_0 > 0$ • Si $q > 1$, (u_n) est strictement croissante sur \mathbb{N} • Si $q = 1$, (u_n) est constante sur \mathbb{N} • Si $0 < q < 1$, (u_n) est strictement décroissante sur \mathbb{N}
Sommes	$S = 1 + 2 + \dots + n$ $=$ $\frac{n \times (n+1)}{2}$	$S = 1 + q + q^{2} + \dots + q^{n} \text{avec } q \neq 1$ $= \frac{1 - q^{n+1}}{1 - q}$
Limites	• si $r > 0$ alors $\lim_{n \to +\infty} u_n = +\infty$ • si $r < 0$ alors $\lim_{n \to +\infty} u_n = -\infty$	• si $q > 1$ alors $\lim_{n \to +\infty} q^n = +\infty$ • si $0 < q < 1$ alors $\lim_{n \to +\infty} q^n = 0$

Remarque : Il y a des suites qui ne sont ni arithmétiques ni géométriques.