Corrigé du devoir surveillé n° 2

Exercice 1:

- $f: f(x) = 0.8^x$ 0.8 < 1, donc la fonction f est décroissante.
- $q: q(x) = 0.4 \times 2.5^x$ 2.5 > 1 donc la fonction g est croissante.
- $h: h(x) = \left(\frac{51}{45}\right)^x$ $\frac{51}{45} > 1$ donc la fonction h est croissante.
- $k: k(x) = 78 \times \left(\frac{5}{7}\right)^x$ $\frac{5}{7}$ < 1 donc la fonction k est décroissante.

Exercice 2:

• $3^{x+1} = 3^{2x+3}$

Comme la fonction $x \mapsto 3^x$ est strictement croissante, l'égalité des images implique l'égalité des antécédents.

Donc $3^{x+1} = 3^{2x+3}$ est équivalent à x + 1 = 2x + 3

On résout :

$$x - 2x = 3 - 1$$

$$-x = 2$$

$$x = -2$$

$$S = \{-2\}$$

• $5^{x+3} = 1$

L'équation peut s'écrire : $5^{x+3} = 5^0$

On en déduit (même raisonnement qu'à la question précédente) : x + 3 = 0

$$Donc: x = -3$$

$$\mathcal{S} = \{-3\}$$

•
$$2^x \times 2^3 = 2^{5x-5}$$

On transforme l'expression donnée :

$$2^{x} \times 2^{3} = 2^{5x-5}$$
 est équivalent à $2^{x+3} = 2^{5x-5}$

C'est équivalent à : x + 3 = 5x - 5

$$x - 5x = -5 - 3$$

$$-4x = -8$$

$$-4x = -8$$

$$x = \frac{-8}{-4} = 2$$

$$\mathcal{S} = \{2\}$$

• $9^x = 3^{x+2}$

Il faut transformer l'écriture pour avoir deux bases égales.

On remarque que $9 = 3^2$, donc $9^x = 3^{x+2}$ est équivalent à :

$$(3^2)^x = 3^{x+2}$$

soit:
$$3^{2x} = 3^{x+2}$$

$$2x = x + 2$$

$$x = 2 \qquad \mathcal{S} = \{2\}$$

Exercice 3:

• $3^{3x} < 3^{x+5}$

Comme 3 > 1, la fonction $x \mapsto 3^x$ est strictement croissante; donc les images sont rangées dans le même ordre que les antécédents.

Ainsi,
$$3^{3x} \leq 3^{x+5}$$
 est équivalent à : $3x \leq x+5$

$$2x \le 5$$

$$x \le \frac{5}{2} = 2.5$$

$$\mathcal{S} =]-\infty; 2,5]$$

•
$$0.2^{2x+3} \ge 0.2^{x-1}$$

Comme 0,2 < 1, la fonction $x \mapsto 0,2^x$ est strictement décroissante; donc les images sont rangées dans l'ordre inverse des antécédents.

Ainsi,
$$0.2^{2x+3} \geq 0.2^{x-1}$$
 est équivalent à : $2x+3 \leq x-1$

$$x < -4$$

$$\mathcal{S} =]-\infty;-4]$$

Exercice 4:

Soit t% le taux d'accroissement moyen annuel.

L'augmentation de 18% est donc équivalente à 5 augmentations successives de t%.

Augmenter de t%, c'est multiplier par $1 + \frac{t}{100}$; donc ici, multiplier 5 fois de suite par $1 + \frac{t}{100}$ revient à multiplier une fois par $1 + \frac{18}{100}$.

On obtient donc :
$$\left(1 + \frac{t}{100}\right)^5 = 1 + \frac{18}{100} = 1,18$$

Pour se débarrasser de la puissance 5, on met le tout à la puissance $\frac{1}{5}$:

$$\left(\left(1 + \frac{t}{100} \right)^5 \right)^{\frac{1}{5}} = 1.18^{\frac{1}{5}}$$

$$\left(1 + \frac{t}{100}\right)^{5 \times \frac{1}{5}} = 1.18^{\frac{1}{5}}$$

$$\left(1 + \frac{t}{100}\right)^1 = 1.18^{\frac{1}{5}}$$

Soit:
$$1 + \frac{t}{100} = 1.18^{\frac{1}{5}}$$

On trouve à la calculatrice : $1{,}18^{\frac{1}{5}} \simeq 1{,}033656884$

Donc:
$$1 + \frac{t}{100} \simeq 1,033656884$$

$$\frac{t}{100} \simeq 0.033656884$$

$$t \simeq 3,3656884$$

Le taux d'augmentation moyenne annuelle est donc d'environ 3,37%.

Exercice 5:

1. f(t) est un produit de trois facteurs, dont deux sont positifs : 0,1 et 4^t . Donc f(t) a le même signe que $(-t^2 + 12)$.

$$-t^2 + 12 \ge 0$$
 est équivalent à : $t^2 \le 12$, donc t compris entre $-\sqrt{12}$ et $\sqrt{12}$.

Ici $t \ge 0$ puisque l'observation commence à t = 0. On obtient donc :

x	0	$\sqrt{12}$	$+\infty$
f(x)		+ 0	_

2. On voit que la concentration atteint 0 à $t = \sqrt{12}$, soit $t \simeq 3,464101615$.

On convertit:

3,464101615 jours = 3 jours et 11,13843876 heures

11,13843876 heures = 11 heures et 8,3063256 minutes

8,3063256 minutes = 8 minutes et 18 secondes, mais une précision à la seconde n'est pas très pertinente ici.

On peut donc écrire : la concentration de bactéries atteint 0 au bout d'environ 3 jours 11 heures 8 minutes .

On peut en déduire que l'expérience s'arrête à cette date (puisqu'il n'y a plus de bactéries); l'ensemble de définition de f est donc $[0; \sqrt{12}]$.

3. 12 heures représentent une demi-journée, donc $t = \frac{1}{2}$.

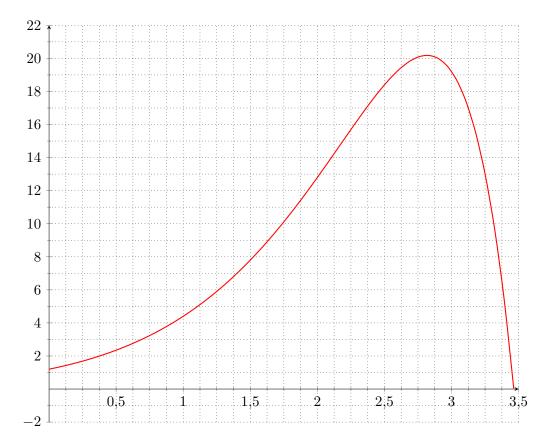
On calcule : f(0,5) = 2,35.

Au bout de 12 h, la concentration est donc de 2,35 milliers de bactéries par mL.

4. Le tableau (les résultats sont arrondis au centième) :

\boldsymbol{x}	0,25	0,5	0,75	1	1,25	1,5	1,75	2	2,25	2,5	2,75	3	3,25
f(x)	1,69	$2,\!35$	3,24	4,4	5,90	7,8	10,11	12,8	15,70	18,4	20,08	19,2	13,01

La courbe:



- 5. La concentration maximum est (d'après le graphique) d'environ 20,2 milliers de bactéries par mL . Elle est obtenue pour $t \simeq 2,8$ soit environ 2 jours et 19 heures .
- 6. On trouve que l'ensemble solution est : S = [1,75;3,3].
- 7. La concentration est supérieure à 10 000 bactéries par mL entre $t \simeq 1,75$ et $t \simeq 3,3$, soit entre 1 jour 18 heures et 3 jours 7 heures environ après le début de l'observation.
- 8. On voit que f(t) devient inférieure à 6 au bout de 3,38 jours soit 3 jours 9 heures environ.