Correction du devoir surveillé n° 3

Exercice 1:

1.

a) On cherche la limite en $-\infty$ d'un polynôme, elle est égale à la limite du terme de plus haut degré, d'après la propriété du cours.

Ainsi:
$$\lim_{x \to -\infty} 3x^2 + 5x - 2 = \lim_{x \to -\infty} 3x^2$$

Ainsi:
$$\lim_{x \to -\infty} 3x^2 + 5x - 2 = \lim_{x \to -\infty} 3x^2$$
.
Or, $\lim_{x \to -\infty} x^2 = +\infty$; donc (par produit), $\lim_{x \to -\infty} 3x^2 = +\infty$.

Donc,
$$\lim_{x \to -\infty} 3x^2 + 5x - 2 = +\infty$$

b) On cherche la limite en $+\infty$ d'une fonction rationnelle, elle est égale à la limite du quotient des termes de plus haut degré, d'après la propriété du cours.

Ainsi :
$$\lim_{x \to +\infty} \frac{x^2 - 5x + 4}{2x^2 + x} = \lim_{x \to +\infty} \frac{x^2}{2x^2} = \lim_{x \to +\infty} \frac{1}{2}$$
.

Donc,
$$\lim_{x \to +\infty} \frac{x^2 - 5x + 4}{2x^2 + x} = \frac{1}{2}$$
.

c) Limite du numérateur : $\lim_{\substack{x \to 2 \\ x > 2}} x^2 + 3 = 2^2 + 3 = 7$

Limite du dénominateur :
$$\lim_{\substack{x \to 2 \\ x > 2}} x - 2 = 0^+$$

Donc (passage à l'inverse) :
$$\lim_{\substack{x\to 2\\x>2}} \frac{1}{x-2} = +\infty$$

Et donc (par produit) :
$$\lim_{\substack{x \to 2 \\ x > 2}} \frac{x^2 + 3}{x - 2} = +\infty.$$

d) Limite du numérateur : $\lim_{\substack{x \to -3 \\ x < -3}} x + 1 = -3 + 1 = -2$

Limite du dénominateur :
$$\lim_{\substack{x \to -3 \\ x < -3}} x^2 - 9 = 0^+$$

Donc (passage à l'inverse) :
$$\lim_{\substack{x \to -3 \\ x < -3}} \frac{1}{x^2 - 9} = +\infty$$

Et donc (par produit) :
$$\lim_{\substack{x \to -3 \\ x < -3}} \frac{x+1}{x^2 - 9} = -\infty.$$

e) D'après le cours : $\lim_{x\to -\infty} e^x = 0$

Donc:
$$\lim_{x \to -\infty} e^x + 2 = 2.$$

f) On a une forme indéterminée du type « $\frac{+\infty}{+\infty}$ »

On peut écrire :
$$\frac{e^x - 3}{x} = \frac{e^x}{x} - \frac{3}{x}$$

On peut écrire :
$$\frac{e^x - 3}{x} = \frac{e^x}{x} - \frac{3}{x}$$
.
Or, d'après le cours : $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$

$$et: \lim_{x \to +\infty} -\frac{3}{x} = 0.$$

Donc (par somme):
$$\lim_{x \to +\infty} \frac{e^x - 3}{x} = +\infty.$$

Pour le b) : $\lim_{x \to +\infty} \frac{x^2 - 5x + 4}{2x^2 + x} = \frac{1}{2}$, donc la courbe représentant la fonction $x \mapsto \frac{x^2 - 5x + 4}{2x^2 + x}$ admet une asymptote d'équation $y = \frac{1}{2}$.

Pour le c) : $\lim_{\substack{x\to 2\\x>2}}\frac{x^2+3}{x-2}=+\infty$, donc la courbe représentant la fonction $x\mapsto \frac{x^2+3}{x-2}$ admet une asymptote d'équation x=2.

Pour le d) : $\lim_{\substack{x \to -3 \\ x < -3}} \frac{x+1}{x^2-9} = -\infty$, donc la courbe représentant la fonction $x \mapsto \frac{x+1}{x^2-9}$ admet une asymptote d'équation x = -3.

Pour le e) : $\lim_{x\to -\infty} \mathrm{e}^x + 2 = 2$, donc la courbe représentant la fonction $x\mapsto \mathrm{e}^x + 2$ admet une asymptote d'équation y=2.

Exercice 2:

2. On sait que pour tout $x \in \mathbb{R} : -1 \le \cos(5x) \le 1$. On peut diviser par $x^2 + 1$, qui est positif.

On obtient :
$$-\frac{1}{x^2+1} \le \frac{\cos(5x)}{x^2+1} \le \frac{1}{x^2+1}$$

Or:
$$\lim_{x \to +\infty} -\frac{1}{x^2 + 1} = \lim_{x \to +\infty} \frac{1}{x^2 + 1} = 0$$

D'après le théorème des gendarmes, on en déduit : $\lim_{x\to +\infty} \frac{\cos(5x)}{x^2+1} = 0$.

2. On sait que pour tout $x \in \mathbb{R} : -1 \le \sin(x^2 + 1) \le 1$. On multiplie par -5 et on ajoute 3x.

On obtient:
$$3x - 5 \le 3x - 5\sin(x^2 + 1) \le 3x + 5$$
.

Ici, il suffit d'écrire :
$$3x - 5 \le 3x - 5\sin(x^2 + 1)$$

En effet :
$$\lim_{x \to +\infty} 3x - 5 = +\infty$$

D'après le théorème de comparaison, on en déduit :
$$\lim_{x \to +\infty} 3x - 5\sin(x^2 + 1) = +\infty$$
.

Exercice 3:

$$1. f(x) = \frac{e^x}{x^{n+1}}$$

f(x) se présente comme un quotient. On applique la formule de dérivation : $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

Ainsi:
$$f'(x) = \frac{e^x \times x^{n+1} - e^x \times (n+1)x^n}{(x^{n+1})^2} = \frac{e^x (x^{n+1} - (n+1)x^n)}{(x^{n+1})^2} = \frac{e^x (x^n \times x - (n+1)x^n)}{(x^{n+1})^2}$$

$$f'(x) = \frac{x^n e^x (x - (n+1))}{(x^{n+1})^2}$$

2. On étudie le signe du numérateur et du dénominateur.

Le dénominateur est un carré, donc positif.

Au numérateur : x^n est positif car $x \in]0$; $+\infty[$; e^x est positif (propriété de la fonction exponentielle). Donc f'(x) est du signe de x - (n + 1). On obtient le tableau :

x	0		n+1		$+\infty$
f'(x)		_	0	+	
f(x)	+∞		$\frac{\mathrm{e}^{n+1}}{(n+1)^{n+1}}$	<u>1</u>	+∞

3. D'après le tableau, on a : $\frac{e^x}{x^{n+1}} = \frac{e^x}{x^n \times x} \ge m$ pour tout x.

Comme x est positif, on en déduit : $\frac{\mathrm{e}^x}{x^n} \geq mx$

4. D'après le tableau, $m = \frac{e^{n+1}}{(n+1)^{n+1}}$ est un nombre positif.

 $\mathrm{Donc}: \lim_{x \to +\infty} mx = +\infty$

Grâce au théorème de comparaison, on en déduit : $\lim_{x\to +\infty}\frac{{\rm e}^x}{x^n}=+\infty$

Exercice 4:

- 1. C'est faux, car f peut avoir une limite finie. Par exemple, si $f(x)=-\frac{1}{x},\ f$ est croissante et $\lim_{x\to+\infty}f(x)=0.$
- 2. C'est vrai. En effet, si $\lim_{x\to+\infty} \frac{f(x)}{g(x)} = 5$, alors f(x) et g(x) sont du même ordre de grandeur.

Si $\lim_{x\to +\infty} g(x)$ était finie, alors $\lim_{x\to +\infty} \frac{f(x)}{g(x)}$ serait $+\infty$ ou $-\infty$.

Si on avait $\lim_{x\to +\infty} g(x) = -\infty$, alors $\lim_{x\to +\infty} \frac{f(x)}{g(x)}$ serait négative.

Donc, il faut avoir : $\lim_{x \to +\infty} g(x) = +\infty$ pour avoir : $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 5$.