Mathématiques - Devoir surveillé n° 5

Exercice 1 - (8 points):

- 1. Simplifier et exprimer les expressions suivantes en fonction de ln(x):
 - a) $\ln(5x) + \ln\left(\frac{x^6}{5}\right)$
 - b) $\ln(x^2 \times e^3) + \ln\left(\frac{e^7}{x^3}\right)$
- 2. Résoudre sur \mathbb{R} les équations et inéquations suivantes :
 - a) ln(5x-1) = ln(x) + ln(3)
 - b) $\ln(x+3) \le \ln(x) + 1$
- 3. Calculer la dérivée des fonctions suivantes :
 - a) $g: g(x) = x^2 \ln(x)$
 - b) $h: h(x) = \ln(x^2 + 1)$

Exercice 2 (12 points):

Partie A:

On considère la fonction f définie sur $]0; +\infty[$ par $f(x) = 5\ln(x) - x - 1$.

- 1. Déterminer la dérivée f' de f.
- 2. Étudier le signe de f' sur $]0; +\infty[$.
- 3. En déduire le tableau de variations de f. Préciser sur le tableau une valeur approchée à 10^{-2} du maximum de f sur $]0; +\infty[$.
- 4. Déterminer $\lim_{x\to 0^+} f(x)$ et compléter le tableau.
- 5. Déterminer $\lim_{x \to +\infty} f(x)$ et compléter le tableau. (On pourra factoriser f(x) par x).
- 6. Démontrer que l'équation f(x) = 0 admet exactement deux solutions sur $]0; +\infty[$. On note α la plus petite et β la plus grande.
- 7. Déterminer une valeur approchée à 10^{-2} de α et β .

Partie B:

Soit (u_n) la suite définie sur $\mathbb N$ par : $\begin{cases} u_0 = 2 \\ u_{n+1} = 5 \ln(u_n) - 1 \end{cases}$

- 1. Soit g la fonction définie sur $]0; +\infty[$ par $: g(x) = 5\ln(x) 1.$ Montrer que g est croissante et que $g(\beta) = \beta$.
- 2. Sur le graphique en annexe, on a représenté \mathscr{C} , la représentation graphique de g et la droite d d'équation y = x.

Noter sur le graphique u_0 , u_1 , u_2 , ..., u_8 .

3. Démontrer par récurrence que (u_n) est croissante et majorée par β . (on peut utiliser la question 1).

1

4. En déduire que (u_n) est convergente. Déterminer sa limite.

Annexe:

