Mathématiques - Devoir surveillé nº 1

Exercice 1 (6 points):

Déterminer la limite en $+\infty$ des suites définies ci-dessous en utilisant les résultats du cours. Chaque suite est définie sur \mathbb{N} , sauf mention contraire.

1.
$$u_n = n^3 - \frac{2}{n^2} \text{ sur } \mathbb{N}^*$$

2.
$$w_n = n^2 \sqrt{n} + 7n$$

3.
$$a_n = (-n)^5 - 6n^2$$

4.
$$t_n = -1,875 \times 5^n$$

5.
$$r_n = 3 \times 0, 1^n$$

6.
$$t_n = \frac{n+3}{2n^2+1}$$

Exercice 2 (4 points):

Déterminer la limite des suites ci-dessous en utilisant un théorème de comparaison.

1.
$$u_n = n + 3\cos(n)$$

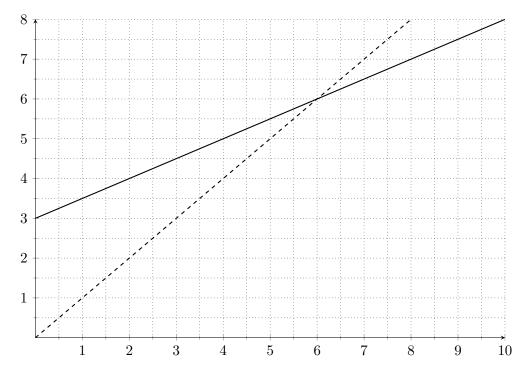
2.
$$v_n = 8 + \frac{(-1)^n}{n}$$

Exercice 3 (10 points):

On considère la suite (u_n) définie par $u_0 = 2$ et telle que pour tout entier naturel n:

$$u_{n+1} = \frac{1}{2}u_n + 3$$

- 1. Calculer u_1 , u_2 et u_3 .
- 2. La droite d'équation $y = \frac{1}{2}x + 3$ est tracée dans le graphique ci-dessous ainsi que la droite d'équation y = x.



Construire u_1 , u_2 et u_3 sur le graphique (laisser les traits de construction).

3. Au vu du graphique, quelle conjecture peut-on faire concernant la suite (u_n) (croissance, limite...)?

1

- 4. Démontrer par récurrence que pour tout $n \in \mathbb{N} : u_n \leq 6$.
- 5. Démontrer par récurrence que la suite (u_n) est croissante.
- 6. Démontrer que la suite (u_n) est convergente (on ne demande pas de déterminer la limite).
- 7. Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = u_n 6$. Démontrer que la suite (v_n) est une suite géométrique de raison $\frac{1}{2}$.
- 8. Calculer v_0 et exprimer pour tout entier naturel n, v_n en fonction de n.
- 9. Exprimer u_n en fonction de v_n et en déduire que, pour tout entier naturel $n: u_n = 6 4 \times \left(\frac{1}{2}\right)^n$.
- 10. En déduire la limite de la suite (u_n) .